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1. Introduction

The Standard Model (SM) of particle physics has so far resisted every experimental effort

to refute its validity. Despite its tremendous success, the mere facts that its interactions do

not incorporate gravity and that its gauge couplings do not unify at the grand unification

scale, lead to the strong belief that the SM is just a low-energy approximation of a more

fundamental theory, valid up to some cutoff. With no new physics at the TeV scale, the

SM interpreted as an effective theory further suffers from the hierarchy problem, namely

the issue of how to create and maintain the large separation between the electroweak and

the Planck scale, MP l, or some other high scale where new physics sets in. An elegant

solution to the hierarchy problem was proposed by Randall and Sundrum (RS) [1]. The

RS model is formulated in five dimensional (5D) anti de-Sitter space (AdS5) with curvature

k. The fifth dimension is assumed to be compactified on an orbifold S1/Z2 with radius r

and is labeled by the coordinate φ ∈ [−π, π]. Two three-branes, i.e., four dimensional (4D)

Minkowskian subspaces, the ultraviolet (UV) and the infrared (IR) brane, are localized at

the orbifold fixed points at φ = 0 and φ = π, respectively. The hierarchy between the

electroweak and the Planck scales is then explained by a non-factorizable metric

ds2 = e−2σ(φ)ηµνdx
µdxν − r2dφ2 , σ(φ) = kr|φ| , (1.1)

where ηµν = diag(1,−1,−1,−1), and xµ denote the 4D Minkowski coordinates. In the

original model, the SM fields were assumed to be localized on the IR brane, where mass
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scales are suppressed by the warp factor e−krπ, whereas gravity propagates in the bulk,

i.e., the whole five dimensional space-time. The parameters k and 1/r are taken to be of

the order of MP l, with the product L ≡ krπ ≈ 37 chosen in such a way as to account for

the ratio of the electroweak and the Planck scales:

ǫ ≡ e−L ≈ 10−16. (1.2)

It was soon realized that the minimal model could be extended by allowing gauge bosons [2 –

5] and fermions [4 – 6] to propagate in the bulk, without spoiling the solution to the hierar-

chy problem. The Higgs field, however, has to live at (or near) the IR brane. Bulk fermions

also allow the RS model to address the flavor puzzle, namely admit an explanation for the

hierarchical structure of the fermion masses. This is done by localizing the fermions at

different positions in the bulk, for which no hierarchical parameters are required [5 – 8].

In this work we study a SU(2)L ×U(1)Y gauge theory in the bulk of RS in a covariant

Rξ gauge, including mass terms generated by an IR brane-localized Higgs field. We work

in the decomposed 4D theory. A formulation in Rξ gauge is important for performing loop

calculations, as will be explained in section 2.4. Within the 5D formulation, Rξ gauges

have been studied in [9, 10]. There are two different ways of treating the effects of a brane

Higgs. The first approach consists of solving the bulk equations of motion (EOM) of the

model, without taking into account the Higgs couplings. These are afterwards treated as a

perturbation [3, 5, 6, 8, 11 – 13]. The other approach includes the Higgs-induced mass terms

from the beginning, which enter the EOM through boundary conditions (BCs) [5, 14 – 16].

We will refer to this as the exact approach. As the first approach is widely used in the

literature and also gives an intuitive explanation of mixings between the modes, we will

employ this technique in the following. A central part of this work is a comparison of the

spectra that one obtains by using the different methods, which provides a cross-check of

the results. Finally, we extend the study to bulk fermions.

Our work is organized as follows. In section 2, the electroweak gauge theory in the

bulk of RS is formulated in Rξ gauge, using a 4D description.1 The mass matrices are

diagonalized analytically, and formulas for the masses and mixings are given. In addition

a numerical analysis of the spectrum is performed, comparing the results with the findings

of the exact approach. In section 3, we consider a single bulk fermion and also diagonalize

the mass matrix analytically. We then perform similar numerical studies as in the case of

the gauge boson sector. Our conclusions are presented in section 4.

2. Bulk gauge fields in Rξ gauge

In this section we derive the 4D theory for the electroweak gauge sector in a covariant

Rξ gauge. The IR brane-localized Higgs field is introduced as a perturbation which is

coupled to the (unperturbed) states after Kaluza-Klein (KK) decomposition. After the

fifth dimension is integrated out, the resulting mass matrices for the vector and scalar

fields have to be diagonalized in order to obtain the mass eigenstates. Due to their regular

1It is straightforward to extend the results to the SU(3)C gauge group.
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structure this is possible, despite the fact that the mass matrices are infinite dimensional.

We will find that the Goldstone bosons of the Higgs doublet mix with the scalar components

of the decomposed 5D gauge fields. We split up the 5D action as in [16]

Sgauge =

∫
d4x r

∫ π

−π

dφ (LW,B + LHiggs + LGF) + ghost terms , (2.1)

but postpone the rotations from Aa = (W 1,W 2,W 3, B)T to the physical states (W±, Z,A).

Thus, the bilinear terms resulting from the covariant derivative of the Higgs doublet read

LHiggs ∋
δ(|φ| − π)

r
(DµΦ)†(DµΦ)

∣∣∣
2

=
δ(|φ| − π)

2 r

[
(∂µh)

2 + (∂µϕi)
2 − 2g

(a)
5 F a

i ϕi∂
µAa

µ + g
(a)
5 g

(b)
5 F a

iF
b
iA

a
µA

µb
]
,

(2.2)

containing the a× i matrix [17]

{
g
(a)
5 F a

i

}
=
v

2





g5 0 0

0 g5 0

0 0 g5
0 0 −g′5




. (2.3)

The index i counts degrees of freedom perpendicular to the Higgs field, whose vacuum

expectation value (VEV) is denoted by v ≈ 246 GeV, and summation over a, b, and i is

understood. The bilinear terms in the pure gauge sector read

LW,B, 2 = −1

4
F a

µνF
µνa +

e−2σ

2r2

(
∂φA

a
µ∂φA

µa + ∂µA
a
5∂

µAa
5

)
− ∂µAa

µ∂φ
e−2σ

r2
Aa

5 . (2.4)

The mixing terms in (2.2) and (2.4) could be removed by choosing the following gauge fixing

LGF = − 1

2ξa

[
∂µAa

µ − ξa

(
δ(|φ| − π)

r
g
(a)
5 F a

iϕi + ∂φ
e−2σ(φ)

r2
Aa

5

)]2

. (2.5)

2.1 Kaluza-Klein decomposition

The gauge fixing Lagrangian (2.5) contains terms in which the δ-distributions get squared.

In [16] it was shown, that these terms cancel with δ-contributions from derivatives of the

scalar components of the gauge fields, entering through the use of the exact EOM. As we

work with unperturbed fields, the relevant terms in the EOM are absent and we would have

to find a method to deal with the δ2-terms, e.g. inserting the completeness relation for one

δ after KK decomposition. Alternatively, performing the integral over the fifth dimension

before fixing the gauge removes the δ-distributions from the theory and we will proceed in

this way. Therefore we first perform the KK decomposition and write

Sgauge =

∫
d4x

[
r

∫ π

−π

dφ (LW,B + LHiggs) + L4D
GF

]
+ ghost terms , (2.6)
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where we have introduced a purely 4D gauge fixing Lagrangian. The KK decompositions

for the gauge fields read [2, 9]

Aa
µ(x, φ) =

1√
r

∑

n

Aa(n)
µ (x)χn(φ),

Aa
5(x, φ) = − 1√

r

∑

n

A
a(n)
5 (x)

1

mn
∂φχn(φ) .

(2.7)

The profiles χn are universal for all gauge fields and form complete sets of even functions

on the orbifold, obeying orthonormality conditions and the well known EOM derived in [2].

As the decomposition of the scalar modes contains the Z2-parity odd term ∂φχn, there is

no zero mode. Thus, the summation starts at n = 1 for that case, whereas it runs from

zero to infinity for the vector fields. This convention will be used throughout the paper.

We define the dimensionless coupling constant g(a) = g
(a)
5 /

√
2πr and remove the mixing

terms in the decomposed 4D action by introducing the gauge fixing Lagrangian

L4D
GF = − 1

2ξa

∑

n

[
∂µAa(n)

µ − ξa

(√
2πg(a)F a

iϕiχn(π) +mnA
a(n)
5

)]2
≡ −1

2

∑

n

Ga(n)2 .

(2.8)

Thus, making use of the EOM and integrating over φ, the bilinear terms in the Lagrangian

finally take the form

L4D
gauge,2 =

∑

n

[
− 1

4
F a(n)

µν Fµνa(n) − 1

2ξa
(∂µAa(n)

µ )2 +
1

2

∑

m

(m2)ab
mnA

a(m)
µ Aµb(n)

+
1

2
(∂µh)

2 − λv2h2 +
1

2
(∂µϕi)

2 +
1

2
∂µA

a(n)
5 ∂µA

a(n)
5

− ξa
2

(
(m2)ijnnϕiϕj + 2

√
2π mnχn(π)g(a)F a

iϕiA
a(n)
5 +m2

nA
a(n)
5

2)]

+ ghost terms .

(2.9)

Here, we have introduced

(m2)ab
mn =m2

nδmnδab + 2π χm(π)χn(π) g(a)g(b)F a
iF

b
i , (2.10)

(m2)ijnn =2π χn(π)2 g(a)2F a
iF

a
j , (2.11)

containing the expressions [17]

g(a)g(b)F a
iF

b
i = g(a)g(b)(FF T )ab =

v2

4





g2 0 0 0

0 g2 0 0

0 0 g2 −gg′
0 0 −gg′ g′2




,

g(a)2F a
iF

a
j = g(a)2

(
F TF

)

ij
=
v2

4




g2 0 0

0 g2 0

0 0 g2 + g′2



 ,

(2.12)

well known from the SM.
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2.2 Diagonalization of the mass matrices

Now one has to perform two types of diagonalizations. The first one concerns the two

matrices shown above and is realized by applying the usual field redefinitions

W
(n)±
µ,5 =

1√
2
(W

(n)1
µ,5 ∓ iW

(n)2
µ,5 ) , ϕ± =

1√
2
(ϕ1 ∓ iϕ2) ,

Z
(n)
µ,5 =

1√
g2 + g′2

(gW
(n)3
µ,5 − g′B(n)

µ,5) , (2.13)

A
(n)
µ,5 =

1√
g2 + g′2

(g′W (n)3
µ,5 + gB

(n)
µ,5) ,

and ϕ0 = ϕ3. Thus, the mixing term for the scalars in (2.9) takes the form

g(a)F a
iϕiA

a(n)
5 =

v

2

(
g (ϕ+W

(n)−
5 + ϕ−W (n)+

5 ) +

√
g2 + g′2 ϕ0Z

(n)
5

)
(2.14)

and the whole Lagrangian decomposes into separate Lagrangians for the fields W±(n), Z(n),

and A(n).

The second type of diagonalization concerns the mixings of the different KK modes

and was discussed in detail for the case of the SM with a flat extra dimension in [18], using

a technique first presented in [19]. A glimpse on the ξ-dependent mass term in (2.9) tells us

that the Goldstone bosons mix with the KK tower of the corresponding scalar components

of the gauge fields. Therefore we introduce the infinite dimensional vectors

W±
5 = (ϕ±,W±(1)

5 ,W
±(2)
5 , . . .)T ,

Z5 = (ϕ0, Z
(1)
5 , Z

(2)
5 , . . .)T , (2.15)

A5 = (0 , A
(1)
5 , A

(2)
5 , . . .)T .

The mass terms of the scalar fields in (2.9) then take the form

Lξ
mass = −ξWW+T

5 M ξ
W

2
W−

5 − ξZ
2
ZT

5 M
ξ
Z

2
Z5 −

ξA
2
AT

5M
ξ
A

2
A5 . (2.16)

The squared mass matrix

M ξ
X

2
=





∑
n=0m

(n,n)
X

2
m

(1,1)
X m1 m

(2,2)
X m2 m

(3,3)
X m3 · · ·

m
(1,1)
X m1 m2

1 0 0 · · ·
m

(2,2)
X m2 0 m2

2 0 · · ·
m

(3,3)
X m3 0 0 m2

3 · · ·
...

...
...

...
. . .





(2.17)

contains the bare KK masses mn (which are equal for all types of gauge bosons) as well as

individual mass terms m
(m,n)
X , X = W,Z that arise from electroweak symmetry breaking

(EWSB) and are given by

(m
(m,n)
W )

2
= 2π

g2v2

4
χm(π)χn(π) ,

(m
(m,n)
Z )

2
= 2π

(g2 + g′2)v2

4
χm(π)χn(π) .

(2.18)
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One might worry about the divergent (0, 0) component in (2.17), which is related to the

squared δ-distribution in the 5D gauge fixing Lagrangian (2.5). In fact, this divergence

vanishes after diagonalization as we will see below. After implementation of the basis

transformation (2.13) and introducing the vector W±
µ = (W

±(0)
µ ,W

±(1)
µ ,W

±(2)
µ , . . .)T and

similarly for Zµ and Aµ, the mass matrix for the gauge fields (2.10) can also be expressed

in terms of the above definitions (2.18). It reads [13]

MX
2 =





m
(0,0)
X

2
m

(0,1)
X

2
m

(0,2)
X

2
m

(0,3)
X

2
· · ·

m
(1,0)
X

2
m2

1 +m
(1,1)
X

2
m

(1,2)
X

2
m

(1,3)
X

2
· · ·

m
(2,0)
X

2
m

(2,1)
X

2
m2

2 +m
(2,2)
X

2
m

(2,3)
X

2
· · ·

m
(3,0)
X

2
m

(3,1)
X

2
m

(3,2)
X

2
m2

3 +m
(3,3)
X

2
· · ·

...
...

...
...

. . .





(2.19)

and the mass term becomes

Lmass = W+T
µ MW

2W−µ +
1

2
ZT

µMZ
2Zµ +

1

2
AT

µMA
2Aµ . (2.20)

Note that for the photon, the mass matrices (2.17) and (2.19) reduce to the same diagonal

matrix, containing the KK masses mn and possessing a vanishing (0, 0) component. For

the W and Z bosons, additional work is required, but it will turn out, that the two matrices

indeed have the same eigenvalues as needed to maintain gauge invariance. Defining

mW =
gv

2
, mZ =

√
g2 + g′2 v

2
, αn =

√
2πχn(π), (2.21)

where α0 = 1 (see below), we derive from (2.17) and (2.19) the characteristic polynomials

det(M ξ
X

2 − λ1) = m2
X

[(
1 +

∑

n=1

α2
n − λ

m2
X

)∏

n=1

(m2
n − λ) −

∑

n=1

α2
nm

2
n

∏

k 6=n

(m2
k − λ)

]
,

(2.22)

det(M2
X − λ1) =

∏

n=0

(m2
n − λ) +m2

X

∑

n=0

α2
n

∏

k 6=n

(m2
k − λ) . (2.23)

After some algebraic manipulation, both equations take the form

det(M
(ξ)
X

2
− λ1) =

(∏

n=1

(m2
n − λ)

)(
m2

X − λ− λm2
X

∑

n=1

α2
n

m2
n − λ

)
. (2.24)

Since v 6= 0 implies m2
n 6= λ, the squared mass eigenvalues λ are given by the transcendental

equation

m2
X − λ− λm2

X

∑

n=1

α2
n

m2
n − λ

= 0, (2.25)

which generalizes the result from [18] to the case of a warped extra dimension. We stress

that, although the Higgs has been introduced as a perturbation, the latter equation is an

exact result, as long as one does not truncate the sum. In the following we use the notation

M
(n)2
X ≡ λn, for the n-th solution to (2.25).

– 6 –
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2.3 The spectrum

As equation (2.25) can not be solved analytically, we perform an iterative solution in

powers of the ratio v2/M2
KK , where MKK ≡ kǫ = ke−krπ is the mass scale of the low-lying

KK excitations. This leads to

M
(0)2
X =m2

X

(
1 −m2

X

∑

n=1

α2
n

m2
n

+ O
(
m4

X

M4
KK

))
,

M
(n)2
X =m2

n



1 +
m2

X

m2
n

α2
n +

m4
X

m4
n

α2
n

(
1 +

∑

k 6=n

m2
nα

2
k

m2
n −m2

k

)
+ O

(
m6

X

M6
KK

)

 .

(2.26)

One observes that the mass of the zero mode decreases, compared to the bare value m2
X ,

whereas the masses of the excitations increase compared to the unperturbed case. Further-

more, the mass of the scalar zero mode is finite.

In order to compare the masses numerically with the results of [16], we need the

solutions to the bulk EOM for the gauge fields, entering the above equations. They are given

in [2, 5, 16]. Introducing the variables t = ǫeσ(φ) ∈ [ǫ, 1] [6] and xn = mn/MKK , they read

χn(φ) = Nn

√
L

π
t c+n (t) , (2.27)

with

c+n (t) = Y0(xnǫ)J1(xnt) − J0(xnǫ)Y1(xnt) ,

N−2
n = [c+n (1)]2 − ǫ2[c+n (ǫ)]2 ,

(2.28)

for the case of a vanishing Higgs coupling. The masses mn of the unperturbed states are

derived from the BC ∂φχn|φ=π = 0, which translates into

c−n (1) ≡ Y0(xnǫ)J0(xn) − J0(xnǫ)Y0(xn) = 0, (2.29)

and there exists also a constant zero mode solution χ0(φ) = 1√
2π

, with m0 = 0. In the

exact approach, the masses of the physical states are derived from the condition [16]

xn c
−
n (1) = − g2v2

4M2
KK

Lc+n (1). (2.30)

After truncation we can solve the transcendental equation (2.25) numerically. In fig-

ure 1 we compare the masses of the W boson and its first excitation that we get by the

different approaches of treating the Higgs, illustrating the dependence on the truncation.

Here and in the following we use ǫ = 10−16 and MKK = 1.5 TeV as input parame-

ters. We plot relative deviations of the perturbed masses from the bare ones, denoted by

∆i ≡M
(i)
W /mi−1, where m0 = mW . The green (light gray) stars correspond to a numerical

solution of (2.25), truncating the infinite sum after n modes. The red (dark gray) crosses

visualize the masses that we get from the expansion up to O(m4
X/M

2
KK) (see (2.26)), trun-

cated in the same way, and the straight black lines represent the exact results obtained by

– 7 –
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Figure 1: Dependence of the masses of the W -boson and its first excitation on the truncation.

using the formalism of [16] (see (2.30)). One observes that the perturbative approach works

very well for the masses of the gauge bosons. The numerical solutions converge quickly

to the exact values. It is noteworthy that taking into account only the mixing with the

first KK level, i.e., truncating the sum in (2.25) at n = 1, already gives about 70% of the

total correction to the zero mode mass. For the zero mode the limit of the expansion lies

slightly below the true value due to the neglected O(m6
X/M

4
KK) contributions. However,

already the first corrections in the expansion (2.26) lead to results very close to the exact

value and it’s a good approximation to truncate the sum at low n.

2.4 Eigenvectors

In the following we give the explicit form of the diagonalization matrices for the massive

gauge bosons X = W,Z, defined by

BTMX
2B = M̃2

X , BBT = 1 ,

GTM ξ
X

2
G = M̃2

X , GGT = 1 ,
(2.31)

where M̃2
X denotes the diagonal matrix built out of the solutions λn to (2.25). We start

with the diagonalization for the 4D vector fields. Calculating the eigenvectors of MX
2, we

get the relation between mass eigenstates X̃
(n)
µ and interaction eigenstates X

(n)
µ :

X̃(n)
µ =

∑

m

BT (n,m)X(m)
µ =

1√
1 +

∑
j=1

α2
jλ2

n

(m2
j−λn)2

(

X(0)
µ −

∑

m=1

αmλn

m2
m − λn

X(m)
µ

)

. (2.32)
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In the same way we obtain

X̃5
(n)

=
∑

m

GT (n,m)X5
(m) =

1√
1 +

∑
j=1

α2
jm2

jm2
X

(m2
j−λn)2

(

X
(0)
5 −

∑

m=1

αmmmmX

m2
m − λn

X
(m)
5

)

(2.33)

for the scalars. To get a better feeling for the structure of the mixing matrices, we plug in

the expansions for the mass eigenvalues (2.26) up to O(m2
X/M

2
KK) and arrive at:

B =





1 α1
m2

X

m2
1

α2
m2

X

m2
2

α3
m2

X

m2
3

. . .

−α1
m2

X

m2
1

1 α2α1
m2

X

m2
2
−m2

1

α3α1
m2

X

m2
3
−m2

1

. . .

−α2
m2

X

m2
2

−α1α2
m2

X

m2
2
−m2

1

1 α3α2
m2

X

m2
3
−m2

2

. . .

−α3
m2

X

m2
3

−α1α3
m2

X

m2
3
−m2

1

−α2α3
m2

X

m2
3
−m2

2

1 . . .

...
...

...
...

. . .





,

G =





1 − 1
2m

2
X

∑
n=1

α2
n

m2
n

α1
mX

m1
α2

mX

m2
α3

mX

m3
. . .

−α1
mX

m1
1 − 1

2m
2
X

α2
1

m2
1

m2
X

m1

m2

α2α1

m2
2
−m2

1

m2
X

m1

m3

α3α1

m2
3
−m2

1

. . .

−α2
mX

m2
−m2

X
m2

m1

α1α2

m2
2
−m2

1

1 − 1
2m

2
X

α2
2

m2
2

m2
X

m2

m3

α3α2

m2
3
−m2

2

. . .

−α3
mX

m3
−m2

X
m3

m1

α1α3

m2
3
−m2

1

−m2
X

m3

m2

α2α3

m2
3
−m2

2

1 − 1
2m

2
X

α2
3

m2
3

. . .

...
...

...
...

. . .





.

(2.34)

From these expressions one can see that for the scalars, the mixings between the zero mode

and the KK excitations is only suppressed by O(mX/MKK), compared to O(m2
X/M

2
KK)

for the vectors. It is easy to check that the given expansions for B and G diagonalize the

corresponding mass matrices exactly to second order in mX/MKK .

The propagators for the massive gauge bosons and corresponding scalars are easily de-

rived from (2.9), after rotating to mass eigenstates. They look like the standard propagators

for massive gauge and Goldstone bosons. The fact that the same mass M
(n)2
X appears in

both, is essential for the cancellation of the dependence on the gauge fixing parameter ξ in

amplitudes. Indeed, the towers of scalars X̃
(n)
5 play the role of Goldstone bosons which are

absorbed into the longitudinal components of the gauge boson towers. The limit ξ → ∞
corresponds to the unitary gauge in which the Goldstone bosons are completely removed

from the theory. This gauge has often been used in the literature [2 – 4, 11]. However, if

one wants to perform loop calculations involving gauge bosons with massive zero modes,

one has to be careful. In general the integration over loop momenta does not commute

with the limit ξ → ∞. Thus, removing the Goldstone bosons can lead to problems, when

there are several mass scales in the theory, which is the case in the RS model, where one

deals with mX and MKK. Therefore it is important to perform the gauge fixing in a covari-

ant Rξ gauge. It should be mentioned that inner lines can also be expressed through 5D

propagators, which has the advantage that one does not have to sum over the KK tower [9].
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3. Fermions

In the following we consider bulk fermions, coupled to a brane-localized Higgs sector, and

diagonalize the mass matrices in closed form. We restrict ourselves to the case of just one

single fermion, as the internal mixings of N generations lead to additional difficulties (see

end of section 3). This simplified scenario illustrates the capabilities of the perturbative

approach. The KK decomposition of the action as well as the bulk EOM can be found

in [6]. Remember that in order to reproduce the SM at low energies, one needs (besides

three generations) two sets of fermions, one charged under SU(2)L (Q), with a left-handed

zero mode, and one singlet (q), with a right-handed zero mode. Since we consider just one

single fermion, in the following the labels Q (q) denote particles that are charged (neutral)

under the corresponding gauge group. We introduce the Yukawa action

SY = −
∫
d4x

∫
dφ

√
G
(
λ

(5)
f Ψ̄

(Q)
L eσΦΨ

(q)
R + h.c.

)
δ(φ − π) . (3.1)

Note that the convention for the 5D Yukawa coupling above differs from that in [16] by a

factor of r. Plugging in the KK decomposition and integrating over φ leads to the mass term

Lm = −
∑

m,n

m
(m,n)
f ψ̄L(Q)

m (x)ψR(q)
n (x) + h.c., (3.2)

with

m
(m,n)
f =

v√
2
ǫ−1 λ

(5)
f fL(Q)

m (π)fR(q)
n (π) . (3.3)

After EWSB we can combine ψ
L(Q)
n with ψ

L(q)
n and ψ

R(Q)
n with ψ

R(q)
n into the vectors

Ψ̂L ≡
(
ψ

L(Q)
0 , ψ

L(Q)
1 , ψ

L(q)
1 , ψ

L(Q)
2 , ψ

L(q)
2 , . . .

)T

,

Ψ̂R ≡
(
ψ

R(q)
0 , ψ

R(Q)
1 , ψ

R(q)
1 , ψ

R(Q)
2 , ψ

R(q)
2 , . . .

)T

.

(3.4)

The whole mass term can then be written as

LM = −Ψ̂LMΨ̂R + h.c. , (3.5)

with

M ≡





m
(0,0)
f 0 m

(0,1)
f 0 m

(0,2)
f . . .

m
(1,0)
f MQ,1 m

(1,1)
f 0 m

(1,2)
f . . .

0 0 Mq,1 0 0 . . .

m
(2,0)
f 0 m

(2,1)
f MQ,2 m

(2,2)
f . . .

0 0 0 0 Mq,2 . . .
...

...
...

...
...

. . .





, (3.6)

where M{Q,q},n denote the KK masses (before EWSB) [12, 8]. The zeros are due to the

fact that fields that are odd under the Z2-parity vanish at the IR brane.
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3.1 Diagonalization of the mass matrix

In order to diagonalize (3.6) we use the important fact, that the entries of the mass matrix

are not independent from each other. The Yukawa masses can be factorized in terms of

profiles of the corresponding fermions, evaluated at the IR brane. We define

αL
m ≡

√
ǫ−1λ

(5)
f fL(Q)

m (π) ,

αR
n ≡

√
ǫ−1λ

(5)
f fR(q)

n (π) ,

(3.7)

so that

m
(m,n)
f =

v√
2
αL

mα
R
n . (3.8)

Now the mass matrix reads

M =
1√
2





vαL
0 α

R
0 0 vαL

0 α
R
1 0 vαL

0 α
R
2 . . .

vαL
1 α

R
0

√
2MQ,1 vαL

1 α
R
1 0 vαL

1 α
R
2 . . .

0 0
√

2Mq,1 0 0 . . .

vαL
2 α

R
0 0 vαL

2 α
R
1

√
2MQ,2 vαL

2 α
R
2 . . .

0 0 0 0
√

2Mq,2 . . .
...

...
...

...
...

. . .





. (3.9)

Deriving the characteristic polynomial of MM † leads again to a transcendental equation

for the (squared) mass eigenvalues of the fermion modes M
(m)2
f ≡ λf

m. We find

λf
m − λf

m

2 v2

2

∑

j,k=0

[αL
j ]

2
[αR

k ]
2

(M2
Q,j − λf

m)(M2
q,k − λf

m)
= 0 , (3.10)

where we have assumed λ
(5)
f to be real-valued. Note that MQ,0 = Mq,0 = 0.

3.2 The spectrum

Since the transcendental equation (3.10) can not be solved analytically, we perform again

an expansion in powers of v2/M2
KK and obtain

M
(0) 2
f = m

(0,0) 2
f

[

1 − v2

2

(

[αR
0 ]

2∑

n=1

[αL
n ]

2

M2
Q,n

+ [αL
0 ]

2∑

n=1

[αR
n ]

2

M2
q,n

)

+ O
( v4

M4
KK

)]

. (3.11)

One can see that the physical zero mode mass is lowered compared to the leading term in

the expansion. For the KK modes we get

M
(m)2
f =






M2
Q, m+1

2



1 +
v2

2
[αL

m+1

2

]
2∑

n=0

[αR
n ]

2

M2
Q, m+1

2

−M2
q,n

+ O
( v4

M4
KK

)


 , for odd m

M2
q, m

2

[

1 +
v2

2
[αR

m
2

]
2∑

n=0

[αL
n ]

2

M2
q, m

2

−M2
Q,n

+ O
( v4

M4
KK

)]

, for even m.

(3.12)
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Figure 2: Dependence of the fermion zero mode mass on the truncation.

Here m labels all diagonal entries of the (diagonalized) mass matrix, and no longer charged

or neutral fields separately. One observes, that to first order in v2/M2
KK just neutral states

of other KK levels contribute to the mass corrections of the charged fermion and vice versa.

The explicit form of the fermion profiles that enter the above equations was calcu-

lated in [5, 6, 16]. Defining cQ,q = ±mQ,q/k, where mQ,q is the bulk mass term of the

corresponding fermion, the zero mode solutions read

fL,R
0 (φ) = NL,R

√
Lǫ

π
tcQ,q , N2

L,R =
1/2 + cQ,q

1 − ǫ1+2cQ,q
. (3.13)

For the excited states (n > 0), we define x
(n)
Q,q = M{Q,q},n/MKK and the solutions are given

by

f{L(Q),R(q)}
n (φ) = N (c{Q,q}, x

(n)
{Q,q})

√
Lǫt

π
f+(t, c{Q,q}, x

(n)
{Q,q}) ,

f{R(Q),L(q)}
n (φ) = ±N (c{Q,q}, x

(n)
{Q,q}) sgn(φ)

√
Lǫt

π
f−(t, c{Q,q}, x

(n)
{Q,q}) ,

(3.14)

where

f±(t, c, x) = J− 1

2
−c(x ǫ)J∓ 1

2
+c(x t) ± J 1

2
+c(x ǫ)J± 1

2
−c(x t),

N−2(c, x) =
[
f+

n (1, c, x)
]2 − ǫ2

[
f+

n (ǫ, c, x)
]2
.

(3.15)

The (unperturbed) KK masses M{Q,q},n are now obtained from the BC at the IR brane

f−(1, c{Q,q}, x
(n)
{Q,q}) = 0. (3.16)
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Figure 3: Dependence of the masses of the first KK level on the truncation.

In the exact approach the masses Mn of the physical fermions are determined by the

equation [16]

1 − λ
(5)
t

2 L2 v2

8π2M2
KK

f+(1, cq, x
(n))f+(1, cQ, x

(n))

f−(1, cq, x(n))f−(1, cQ, x(n))
= 0, (3.17)

where the index n labels all mass eigenstates.

In figures 2 and 3 we compare the masses obtained from the different approaches,

demonstrating the dependence on the truncation of the infinite sums in the corresponding

expressions. For illustration we consider the top quark and take the values

cQ = −0.473 , ct = 0.339 , λ
(5)
t = 0.422 (3.18)

from [16] as input parameters. We plot again the relative deviations of the perturbed masses

from the bare ones. These would be m
(0,0)
f = 140 GeV for the zero mode, MQ,1 = 3.690

TeV for the first charged and Mq,1 = 5.419 TeV for the first neutral excitation for our

choice of parameters. The green (light gray) stars correspond to a numerical solution

of (3.10), truncating the infinite sums after n modes. This way, n charged and n neutral

modes are taken into account. The red (dark gray) crosses represent the masses we get

from the expansions (3.11) and (3.12), truncated in the same way. The black lines show the

exact results obtained by using the formalism of [16] (see (3.17)). One observes that the

perturbative approach works quite well. It is interesting to note that taking into account

just the mixing with the first KK level, which includes the first excitation of the charged

fermion as well as that of the neutral one, already accounts for about 70% of the total

shift in the zero mode mass. For the excitations this is not the case, but nevertheless the

convergence is reasonable. Note that also for the fermions the expansion in O(v2/M2
KK)

works well. The eigenvectors, which build the entries of the diagonalization matrices U and

V with U †MV = M̃ , where M̃ is the diagonalized mass matrix, are given in appendix A.
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For N generations of fermions the entries in the mass matrix (3.6) are replaced by

N ×N matrices. Therefore the diagonalization and derivation of the eigenvalues presented

in this section does not work any longer. One could perform the diagonalization, using

an expansion in v2/M2
KK from the very beginning (see also [12]). However, this leads to

quite complicated, implicit expressions for the entries of the diagonalization matrices and

the method presented in [16] seems more suitable for the N fermion case.

4. Conclusions

In this paper, we have worked out the effective 4D theory for the spontaneously broken

SU(2)L × U(1)Y gauge symmetry in the Randall-Sundrum geometry, applying the widely

used perturbative approach. We have performed the gauge fixing in a covariant Rξ gauge

and pointed out its relevance for loop calculations in the decomposed theory. The emerging

mass matrices have been diagonalized in closed form and a comparison of the spectrum

with the results obtained by the exact method of [16] has been presented, emphasizing

that already a low truncation of the KK tower leads to good numerical agreement. Then

we have applied the perturbative approach to the fermion sector, where we restricted

the considerations to the case of a single fermion. In summary, we have validated the

applicability of the perturbative approach. For calculations incorporating N generations

however, the exact method seems to be more suitable.
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A. Eigenvectors in the fermion sector

The relations between mass eigenstates (denoted by a tilde) and interaction eigenstates for

the fermions read:

̂̃Ψ
(n)

L =
∑

m

U †(n,m)Ψ̂
(m)
L

=
∑

m=1

1

NU
n





ψ

L(Q)
0 −

(
αL

mλ
f
n

αL
0 (M2

Q,m−λ
f
n)

)
ψL(Q)

m +




αR

mMq,m

αL
0 v(M

2
q,m−λf

n)

(∑
k=0

αR2
k

M2
q,k

−λ
f
n

)



ψ
L(q)
m





,

NU
n =

√√√√√√√1 +
∑

m=1

(
αL

mλ
f
n

αL
0 (M2

Q,m − λf
n)

)2

+
∑

m=1




αR

mMq,m

αL
0 v(M

2
q,m − λf

n)

(∑
k=0

αR2
k

M2
q,k

−λ
f
n

)





2

,

(A.1)
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and

̂̃Ψ
(n)

R =
∑

m

V †(n,m)Ψ̂
(m)
R

=
∑

m=1

1

NV
n





ψ

R(q)
0 +




αL

mMQ,m

αR
0 v(M

2
Q,m−λ

f
n)

(∑
k=0

αL2
k

M2
Q,k

−λ
f
n

)



ψ
R(Q)
m −

(
αR

mλ
f
n

αR
0 (M2

q,m−λf
n)

)

ψR(q)
m





,

NV
n =

√√√√√√√1 +
∑

m=1




αL

mMQ,m

αR
0 v(M

2
Q,m − λf

n)

(∑
k=0

αL2
k

M2
Q,k

−λ
f
n

)





2

+
∑

m=1

(
αR

mλ
f
n

αR
0 (M2

q,m − λf
n)

)2

.

(A.2)

Looking at these relations one observes a mixing of neutral fermions with charged ones, so

that for the SM gauge group there could be right-handed couplings of zero mode fermions

to the W boson [8, 12, 13, 20].
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